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1. Introduction 
 
In [1], we introduced the BetterEstimate technique for project estimation. The technique borrows 
from traditional methods like the PERT technique of 3 estimates [2] and from more recent findings 
from Jorgensen [3] about increasing realism in expert estimates. 
Under the BetterEstimate approach, experts will provide the following data for each task in a 
project: 

• optimistic time 

• probability of duration being smaller than the optimistic time 

• pessimistic time 

• probability of duration being larger than the pessimistic time 
 
From those data, a probability distribution is determined; then, a most likely estimate is provided at 
the task level (straight from the probability distribution), together with a most likely estimate of 
effort at the project level (using Monte Carlo simulation). Prediction Intervals at project level can 
also be provided. 
 
Note that unlike traditional methods, BetterEstimate does not ask the estimators for a most likely 
duration; instead, the most likely duration is calculated from the input data.  
 
This paper presents the math behind the method. More exactly, a procedure to find a probability 
distribution from the data above is discussed, and an interesting insight on the relationship 
between the given times and probabilities is derived. 
 
The math is relatively easy to follow, and requires only a basic understanding of probability theory. 
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2. Deriving a probability distribution 
 
The first step in obtaining a probability distribution for a task is the selection of a distribution family. 
Although PERT adopted a beta distribution family, in this work we adopted the triangular 
distribution family, as it simplifies an already complex problem, yet provides good results.  
 
We recall that the triangular probability distribution is a continuous distribution defined over the 
range [a..b] with probability density function: 
 

   
(1)

 
 
and distribution function: 
 

   
(2)

 
 
Where c ∈ [a..b] is the mode. The triangle in Fig.1 represents a triangular probability density: 
 
Fig. 1 
 

 
 
Assume each point Pi has coordinates (ti, yi), where yi = P(ti). The data provided by the estimators 
in the BetterEstimate approach can be easily related to points and areas:  

- The “optimistic” time is actually t2 (in PERT, it would be t1; this is a major difference between 
PERT and BetterEstimate). 

- The “pessimistic” time is t4.  
- The probability of duration being smaller than the optimistic time (Po) is the area of the 

green rectangle divided by the area of the outer rectangle (P1 P3 P5).  

- The probability of duration being higher than the pessimist time (Pp) is the area of the 
orange triangle divided by the area of the outer triangle.  



 
Note that the area of the outer triangle, by the very definition of probability density, must be equal 
to 1. All the remaining data (t1, t3, t5, y2, y3, y4) are unknown, while y1 and y5 are obviously equal to 
0. 
 
Deriving a probability distribution boils down to finding t1 and t5 (the “actual” minimum and 
maximum duration), along with t3 (the mode), so that we can calculate the expected duration, 
which for a triangular distribution is just the average of those 3 values: (t1 + t3 + t5) / 3. 
 
The problem may seem trivial, as many equations can be inferred from triangle similarity. For 
instance, y2 / y3 = (t2 - t1) / (t3 - t1).  
Unfortunately, this approach simply does not work. Indeed, the problem is under-constrained (we 
have more variables than equations), so some kind of heuristics will be needed to choose the 
“best” viable solution. Using triangle similarity leads to a quartic equation with complicated factors, 
which doesn’t suggest any sensible heuristics. 
 
 
 
Note 1: 
 
Fig. 1 may suggest some inequalities that may not necessarily hold. More specifically, while by 
definition we can assume: 
 
t1 <= t2 
t4 <= t5 
t2 <= t4 
 
there is complete freedom on the value of t3. While it is common to have 
 
t2 <= t3 <= t4 
 
this is by no means a constraint on the triangular distribution, and we may also have  
 
t3 <= t2 <= t4 
 
or 
 
t2 <= t4 <= t3 
 
Both cases correspond to particular shapes of the triangle, with P3 heavily shifted to the left or the 
right side. 
 
Also, note that the green and orange triangle must not intersect; therefore: 
 
Po + Pp <= 1 
 
In most practical cases, a strict inequality will hold. 



 
3. A “creative” approach 
 
A different approach is to solve an easier problem instead, where some sensible heuristics can be 
applied, and then scale the results back to the original problem (see Fig. 2).  
 
Fig. 2 
 

 
The original triangle in Fig 1 can be considered as the linear scaling of a similar triangle defined 
over [0..1]. Of course, some data that was previously known (e.g. t2) would be now unknown, while 
data previously unknown (e.g. t1) would now be known (having been fixed to 0). 
 
Linear scaling equations can be derived easily. Figure 3 is a zoom into the background triangle. 
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Fig. 3 
 

 
 
From Fig. 1, Fig. 2 and Fig. 3, and considering that a linear scaling must (by definition) be defined 
by a linear relationship F( x ) = a x + b, we have: 
 
F( 0 ) = b =  t1 
F( tb) = t2  
F( tc ) = t3      (3) 
F( td ) = t4  
F( 1 ) = a + b = t5  
 
Note that the linear scaling must respect the constraint t1 >= 0, therefore b >= 0.  
 
We recall that t2 and t4 are known. If we consider tb and td known (we’ll derive them in the next 
paragraph), we can easily derive factors a and b: 
 
t2 = a tb + b  
t4 = a td + b 
 
Hence:                                                         
 
a = (t4 – t2) / (td – tb) 
b = t2 – a tb =  
      t2 – (t4 – t2) / (td – tb) tb =    (4) 
      (t2 td – t2 tb  –  t4 tb + t2 tb)  / (td – tb) =  
      (t2 td –  t4 tb)  / ( td – tb ) 
 
 
Now, b >= 0 iff t2 td – t4 tb >= 0 (as td – tb is always > 0 by definition). Therefore, the following 
inequality must hold: 
 
t2 td >=  t4 tb 
 
Since both tb and t2 are > 0, this can be rewritten as 
 
td / tb >=  t4 / t2 
 
or, as we’ll find more convenient later 
 
t4 / t2 <= td / tb      (5) 
 
This will lead to an interesting constraint on the probabilities Po and Pp defined in paragraph 2. 



 
4. Solving the problem in [0..1] 
 
The exact meaning of “solving the problem for the triangle in [0..1]” is not necessarily obvious, and 
requires some explanation. Consider again the triangular probability density in Fig. 3, and the 
associated probability distribution in Fig. 4: 
 
Fig. 4 
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Having fixed the extremities (ta and te) respectively to 0 and 1, the shape of the distribution is now 
entirely dependent on tc. As we move tc from 0 to 1, we obtain a family of probability distributions, 
like in Fig. 5: 



 
Fig. 5 

 
 
(Note that once you fix a tc, you get a single probability distribution as expected) 
 
Now, in order for this triangle to be a scaled version of the original triangle in Fig 1, some 
constraints must hold: 
 
Po = D( tb ) 
Pp = 1 – D( td ) 
 
where D is the probability distribution. Combining these constraints with equation (2), where a = 0, 
b = 1, 0 <= tb <= td <=1, 0 <= tc  <=1, we obtain: 
 
  Po <= tc 

 
tb =   
 

 
Po > tc 
 

          (6) 
 

 
Pp > 1- tc 
 

td =   

 
 

Pp <= 1- tc 
 

 
      
 
 



 
So, assuming for instance 
 
Po = 0.2 
Pp = 0.1 
 
As tc moves in [0..1], tb and td will move along the curves in Fig 6, as defined in (6): 
 
Fig. 6 
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Note that these two curves can be seen also in Fig. 5, as highlighted in yellow in Fig. 7 for the 
chosen values of Po and Pp: 
 



 
Fig. 7 
 

 
 
 
 
Now, if we could define a criteria to choose the “best” tc (remember that Po and Pp are known) we’ll 
just have to put it back in (6), obtain tb and td, derive the linear scaling factors a and b as per 
equation (4), and then apply the linear scaling as per equation (3) to obtain the “best” probability 
distribution fitting the estimation data. 



5. Some heuristics and the constraint on linear scaling 
 
It is widely known that software developers routinely underestimate effort (see [1], [3] and their 
bibliography for more). Therefore, a sensible heuristic could be to compensate for 
underestimation.  
It is also known (see [3] again) that estimators tend to provide very narrow ranges even in front of 
large uncertainty. Again, a sensible heuristic could be to compensate for a narrow [t2, t4] provided 
by the expert. 
 
When we consider the linear scaling, we have that tb must scale to t2, and td must scale to t4.  
Since t2 and t4 are fixed (provided by the estimator), we get the widest range for [t1, t5] when tb and 
td are closest to each other (therefore using the smallest portion of the [0..1] interval: this way, 
[0..1] will scale to the largest interval).  
 
Therefore, a simple yet effective heuristics is to take tc in [0..1] such that td - tb reaches its 
minimum. Given the equations (6), this would lead to a relatively simple piecewise nonlinear 
minimum problem: 
 
 

 
-   

Po <= t 
AND 
Pp >= 1- t 

 

 

 
 
-   

Po <= t 
AND 
Pp <= 1- t 

       (7) 

 

 
- ( ) 

Po > t 
AND 
Pp <= 1- t 

 

           
Note that a fourth condition, namely Po > t AND Pp > 1- t is impossible because, by definition, Po + 
Pp <= 1 (see paragraph 2, Note 1). 
 
However, we must still respect the constraint t1 >= 0. We recall from (5) that this can also be 
written as t4 / t2 <= td / tb. Therefore, (7) must be rewritten by adding the following constraint: 
 

 

(8)
 

 
Solving (7) under constraint (8) is a relatively simple numerical problem, and we won’t investigate 
it any further here (we just recall that td and tb are defined in (6) as a function of tc).  
 
Also, once the probability distribution of each single task has been found, combining them using a 
Monte Carlo simulation is a straightforward and well-known process, which does not require 
further explanation. 



 
6. Solution existence 
 
The constraint (8) is actually a solution existence constraint. Given some input data, there might 
be no way to satisfy that constraint, that is, no solution in [0..1] that can properly scale back to the 
input data. 
 
Unfortunately, (8) is not directly expressed in terms of BetterEstimate’s input data. However, since 
(6) defines tb and td in terms of tc, Po and Pp, (8) can also be expressed in terms of Po and Pp. This 
is particularly interesting, as all the involved factors (t2, t4, Po, Pp) would then be the input values of 
the BetterEstimate method. 

It can be proven (see Appendix A) that   

 

is equivalent to: 

 

 
                   (9) 

 
Therefore, given the input data for BetterEstimate, that is, a pair (t2, t4) and a pair (Po, Pp), we can 
solve the problem (that is, there is a triangular distribution fitting the data) iff 
 

 
 
It makes then sense to investigate the function 
 

M(Po, Pp) =  

 

(10) 

 
as M(Po, Pp) will effectively limit the maximum ratio t4 / t2 for which a solution can be found. 
  
Fig. 8 provides a first look into the shape of M(Po, Pp) 
 



 
Fig. 8 
 

 
 
Note that, according to what above, M(Po, Pp) is only defined when Po + Pp <= 1. 
 
 
The shape has interesting consequences, which we'll analyze in the next paragraph. 



6. An interesting insight 
 
In [1], we had to exclude some samples from Jørgensen's data set, as no triangular distribution 
could be found to fit the data. For instance, in the second data set, the following sample could not 
be used: 
 
t2= 4 
t4= 20 
Po = 30% 
Pp = 10% 
 
(also indicated, but not used by BetterEstimate, was a most likely time = 16; the actual time was 
14). 
 
In this case, t4 / t2 gives 5, while (10) gives 4.186, so (9) is not respected.  
 
What this is actually telling us is that the estimated times are relatively too distant for the given 
probabilities. Let's analyze this statement better: 
 
- relatively too distant 
When estimates are given as a range [a, b], people tend to look at the width (b-a) as being an 
important factor (higher width representing higher uncertainty). However, (10) reminds us that we 
also have to look at the ratio (b/a) as an indicator of uncertainty, and that uncertainty must 
somehow be reflected in the given probabilities. 
 
- for the given probabilities 
In this case, although the ratio was quite big, the estimator had high confidence on the maximum 
value (90%) and lower confidence on the minimum value (70%). In fact, he also indicated a most 
likely value of 16: this suggests that the optimistic time was really optimistic, yet he indicated a 
30% probability of requiring less than 4. 
 
Generally speaking, a failure to find a probability distribution for the given data is usually caused 
by: 
 
t2 being relatively much smaller than t4 (this usually indicates high optimism). 
 
Po being too high (this usually indicates high optimism). 
 
In this case, it is suggested that we review the estimate, either by increasing t2 or decreasing Po (or 
both).  
 
Alternatively, we may have been too pessimistic. Indeed, we can try to raise the value of (10) also 
by decreasing t4 and/or decreasing Pp. This would only be appropriate if, upon consideration, the 
estimate is considered too pessimistic. Note, however, that decreasing Pp gives us limited 
leverage in affecting the value of (10), again indicating that it's probably better to look for 
overoptimism first. 
 
To clarify this point further, it is important to understand how decreasing Pp or Po can influence 
(10). 



 
Given the equation 
 
M(Po, Pp) = th 
 
Where th is a threshold we want to reach (in practice, it will be t4 / t2), we begin by solving the 
equation for Po and (separately) for Pp: 
 
 

Po( Pp, th ) =  

 

 (11) 

Pp( Po, th ) =  
 

(12) 

 
We’ll see that (11) is essentially hyperbolic in th, while (12) is obviously parabolic in th. 
 
By fixing a value for Pp, Po( Pp, th ) becomes obviously a function of th only. For instance, by fixing 
Pp = 0.1 (as in the excluded sample), we obtain the following function: 
 
Fig. 9 
 

 
 
 
 



 
The function is essentially hyperbolic, with the exception of the [0..1] range as visible here: 
 
 
Fig. 10 
 
 

 
Being hyperbolic, we can obtain very high values for th by decreasing Po. In our case, we could 
obtain th = 5 (therefore allowing a solution to exist) by just setting Po = 0.2548 (lowering the given 
0.3 just a bit). Note that as revealed by Fig. 10, we have a large leverage in reaching high 
threshold values by simply adjusting Po. 
 



 
Similarly, by fixing a value for Po, Pp( Po, th ) becomes obviously a function of th only. For instance, 
by fixing Po = 0.3 (as in the excluded sample), we obtain the following function: 
 
Fig. 11 
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The function is parabolic, and since Pp <= 1, its domain is heavily constrained. We can see that, to 
raise the threshold up to 4, we would have to lower Pp down to 0.0335 (from an initial 0.1). Also, 
note that while adjusting Po allows reaching very high thresholds, Pp provides limited leverage (in 
this case, the maximum threshold is about 12.24). 
 
It is important to understand that minimal adjustments of Po and/or Pp may be enough to 
guarantee the existence of a solution, but that does not mean we are making a quality estimate. 
To better understand the concept, we can take a look at the “best” probability distribution fitting the 
data: 
 
t2= 4 
t4= 20 
Po = 25% 
Pp = 10% 
 
that is, a minimally readjusted input compared to the excluded sample. 



 
Fig. 12 
 

 
 
Here is the even more explicative (if unusually shaped) probability density: 
 
Fig. 13 
 

 
 
The resulting triangle is completely skewed. To obtain a reasonable density (not necessarily 
perfect, but reasonable), it would be better to keep Po and Pp unchanged, but raise t2 up to 9 
(which is the first value that doesn’t give a skewed triangle). In this case, BetterEstimate provides 
an estimated effort of 12.26, which is close enough to the actual 14.  
 
Of course, this process can’t be mechanical. A failure in finding a probability distribution, or a 
highly skewed distribution, is mostly a symptom that the input data are questionable. It’s up to the 
estimator to critically review the input data: a tool can only provide assistance. 
 
To summarize, when a probability distribution can’t be found, we must review the estimate for 
over-optimism, and adjust t2 and/or Po (they both provide good leverage). If the estimate is 
considered too pessimistic, is probably better to adjust t4 (which provided a good leverage) than Pp 
(which doesn’t). Looking for excessively skewed distributions can also help to appreciate 
unbalanced estimates. 



 
7. Conclusions and further work 
 
We have presented the math behind the BetterEstimate method for probabilistic effort estimation. 
The math is relatively straightforward, except for the slightly creative approach needed to obtain a 
model amenable to heuristic reasoning. Obviously, users of the BetterEstimate tool do not need to 
understand the underlying math. 
 
The approach relies partially on heuristics, aimed at compensating for over-optimism. This is an 
area that may require further investigation, as it has sometimes been observed that people tend to 
be over-optimistic on large tasks, but conservative on small tasks. It would generally be useful to 
apply the BetterEstimate method under controlled conditions, together with different estimation 
styles (e.g. top-down vs. bottom-up) and possibly derive better heuristics. 
 
We also derived some relevant insight on the constraints that apply to the input values, and 
strategies to improve the estimate when a fitting probability distribution cannot be found. Here is 
an area where the existing tool could be significantly improved: today, a generic error message is 
provided, while the tool could better assist the user to refine and improve the estimate. This would 
be an interesting step toward computer-assisted expert estimation. 
 
As highlighted in [1], the single most interesting area of research is probably the investigation of 
techniques to analytically derive the probabilities Po and Pp, using different sources of information 
like multiple experts (a-la Delphi), paired comparison, risk factors, and so on. Again, providing 
some kind of automatic support inside an integrated tool could improve our ability to estimate with 
higher realism and precision. 
 



 
8. Appendix A 
 
Proving that (8) is equivalent to (9) requires three distinct proofs, as (6) defines tb and td in terms of 
tc, Po and Pp as piece-wise functions, but one combination is impossible, just like in (7). 
 
As a formal proof will be rather long, we’ll offer here a simpler, more intuitive explanation. The ratio 
td / tb will reach its maximum value when td is maximum and tb is minimum. In order for this to 
happen, given a Po and Pp pair, Po must cover a near-vertical area (so that tb will be at is 
minimum) and Pp must cover a near-horizontal area (so that td will be at is maximum). 
The (degenerate) condition under which this is true is the following: 
 
Fig. 14 
 

t

P(t)

0

0
1

2

Pb

Pc

Pd

PePa

t

P(t)

0

0
1

2

Pb

Pc

Pd

PePa

 
That is, the triangle is completely skewed, just like in Fig. 13. Please note that the base of the 
orange triangle (having area Pp) is 1- td, while the base of the green trapezoid (having area Po) is 
tb. By triangle similarity, we can see that: 
 
(1- td) / 1 = yd / 2  ó yd = 2 (1- td) 
 
Pp = yd (1- td) / 2 = (1- td) 2 
 
Hence td =  
 
By the same reasoning, considering the complement triangle of the green trapezoid, we can show 
that: 
 

tb = 
 

 
As this is the limit, degenerate condition, it follows that in general: 
 

td / tb <= 

 
 
QED. 
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