
When Past Solutions
Cause Future Problems

s o a p b o x

I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 1 9

c a r l o p e s c i o
independent consultant

Currently, a worldwide effort is underway to uncover
the calendar-related programs embedded in our legacy
software. When these applications were first coded, had
programmers rigorously and repeatedly questioned how
their code handled date validity, the Year 2000 problem—
the largest crisis the information technology industry has
yet faced—could have been greatly mitigated. Most code
lasts far longer than its original programmers anticipated,
and sometimes even outlives successive generations of hard-
ware and operating systems. Not surprisingly, when this
legacy code is ported to a new environment, inherited so-
lutions cause new problems. Carlo Pescio suggests several
techniques for avoiding or resolving these issues.

—Tomoo Matsubara

SOFTWARE ENGINEERS SHOULD AVOID
the impulse to design during requirements analysis.
Although finding a software engineering book that
fails to stress the importance of this is rare, applying
such sound principles is harder than it seems. Without
a practical strategy, this key separation is condemned
to remain academic.

A WAR STORY. Some months ago, I visited a middle-
sized software company that develops a family of bank-
ing products. They called me in to help with the archi-
tectural design of some new applications. During a
break, a programmer working on another project asked
for help on a tricky problem. His task was to implement
a resizable console-style window that would consis-
tently show 80 ×23 characters no matter the window’s
size, the selected character set, the display device, and
so on. Because I knew the quirks in Microsoft Windows
that we must work around to make such a window func-
tion, we solved the problem easily.

Late that afternoon, as activity on the new project
wound down, I asked the programmer’s project man-
ager why they needed a console-style window. “That’s
obvious. We receive a number of 80 ×23 pages from a
mainframe, and we have to show them in sequence. I
want a Windows look and feel, so the user should be
able to resize the window, change the font, and so on.
That’s even in our requirements document....” I didn’t
mind appearing childlike, so I again asked him why he
had to show the pages sequentially in an 80 ×23 format.

“Oh well, we do that across our entire product family.
We started more than 20 years ago with dumb termi-
nals, then we moved to text-based PCs, and now we
have this Windows stuff.…”

I wasn’t convinced yet, so I tried his patience by
asking to see a few examples of the mainframe pages.
For each session, they all had a common header to
identify the document, a portion of text, and a se-
quential footer—basically a page number. Later in the
conversation, I discovered that 20 years ago they de-
vised the paging scheme so that they could show
“long” documents on dumb terminals. As the client
technology evolved to text-based PCs and then GUIs,
the mainframe side remained mostly untouched. The
paging scheme, which was adopted as a solution 20
years before, had gradually become an entrenched
problem, to the point where it assumed a life of its own.

Naturally, given the client technology’s progress
they had a much better option available now: trans-
mit the entire document from the mainframe server
and leave the formatting to the client. In the Windows
environment, you move through a long document by
scrolling, not by paging, which is not only more user
friendly but also easier to implement in that environ-
ment. Although it took a little archeology to uncover
the original problem, the project manager quickly
agreed that the scrolling-based solution was better.
We rapidly devised a method to keep the mainframe
side untouched while we rebuilt the entire document
on the client side by extracting and collating pages.
The customers loved the new product because they
weren’t forced to move to the next page just to see the
next line. Only the programmer who wasted time
working on the 80 ×23 window was upset. A large in-
vestment of emotional energy always accompanies de-

The mainframe solution,
adopted 20 years before,
had gradually become
an entrenched
client-side problem.

A forum for
exchanging

ideas,
philosophy, and

experience.

Editor:
Tomoo

Matsubara
Matsubara Consulting

1-9-6 Fujimigaoka,
Ninomiya Naka-gun,

Kanagawa 259-01
Japan

matsu@sran125.sra.co.jp

.

velopment; throwing away a piece of code
because the requirements were “wrong” is a
painful episode in any programmer’s life.

PROBLEMS AND SOLUTIONS. I’m a firm believer
in software process improvement. I take
every chance to reflect on the source of each
problem and think about a prevention strat-
egy. That’s the only way I know of improv-
ing a process: by looking at real problems and
trying to fix them, not by speculating on the
desirable properties of a process in the safety
of my study. So, I asked myself, how did a
“wrong” requirement snake in?

Did the company suffer from a lack of
process? Quite the opposite: They were ISO
9000-certified and allocated substantial re-
sources to analysis and design. But it takes
more than a documented process to make a
good analysis. There are two frequently ne-
glected issues that strongly influence analy-
sis quality.

♦ As technical people, we thrive on find-
ing solutions. We cannot look at a problem
without feeling the wheels of thought spin.
We automatically begin to generate solu-
tions, generalize the problem, then seek even
better solutions. If we don’t have a problem
at hand to solve, we look for one—that’s the
emotional root of research and where our at-
tention first focuses. We need a deliberate
act of will to exclude solutions from our think-
ing at the analysis stage so that we can con-
centrate on fully describing the problem.

♦ More often than we’d like, we inject
past solutions into the problem domain dur-

ing the next development round. More pre-
cisely, as Figure 1 shows, we inject part of
the solution domain into the problem do-
main whenever the same or a similar project
is revisited. When your system is maintained,
ported, and reengineered over several years,
it becomes harder and harder to properly
recognize fragments of solutions that were
injected earlier. They become accepted as
part of the problem domain.

SYMPTOMS AND SOLUTIONS. Is it possible to
clear these blind spots? Here are a couple of
the symptoms I’ve identified that should trig-
ger your internal alarm, and a few proactive
steps you can take early on to avoid devel-
opment pitfalls.

Symptom 1. If you are stretching and
tweaking the technology, maybe your sys-
tem really is on the cutting edge. Or maybe
there’s old technology in your requirements.
Remember that making an 80 × 23 paging
viewer in Windows was much harder than
implementing a more user-friendly, scrolling
viewer. Consider traditional query systems
as another example. Most are conversational:
users log in, use the system for a while, then
log out. If you try to port the same architec-
ture to the Web, you may encounter an im-
pedance mismatch with the transactional na-
ture of HTTP, which has no concept of
“session.” Better, then, to design a new sys-
tem from the real user requirements than to
force your old solution into a new shape.

Symptom 2. If your application does not
exploit any of the advanced GUI, database,
multimedia, and interoperability support
provided by modern systems, perhaps your
philosophy is less is more. Or maybe you sim-
ply ported your old solution to the new en-
vironment, unthinkingly restricting yourself
to the old technology’s limits. Consider, for
example, data sonification in biomedical
products. Although many applications, such
as gastroenterology, could incorporate the
technology to some advantage, it is mostly
restricted to cardiology, where sounds have
a long tradition of usefulness. In a similar
sense, many so-called object-oriented pro-
grams are actually structured programs in
disguise. Objects are used only as passive data
structures, often with a centralized con-

troller, recycling old solutions into the new
paradigm.

Step 1. Document the whys. I see a lot of
redundant documentation produced during
development, mostly to satisfy paper-hun-
gry managers and quality assurance person-
nel. I often see, for example, a class diagram
and a detailed plain-text explanation of it.
The latter is usually redundant, as it does not
add significant information to the diagram.
If it does, you should ask yourself why that
information wasn’t captured in the diagram
itself, perhaps by adding a few callout text
boxes. People are expected to read the dia-
gram and understand the notation; if man-
agement insists on having wordy explana-
tions, consider buying a CASE tool that
converts diagrams into detailed reports.

On the other hand, you should invest
more time in making a thorough diagram
and then documenting why you did things a
certain way, which external forces shaped the
project, and so on. You should do that at each
level, from analysis to coding. Expect some
resistance. After all, explaining what’s already
in the diagram is much easier and less threat-
ening than explaining why you chose a spe-
cific technique or method. Years ago, a
“macho programmer” reacted to this pro-
posal by saying that “good software does not
need much explanation.” He left the project
shortly thereafter, and his legacy code, with
its sparse accompanying explanations, re-
mained a maintenance nightmare until it was
finally replaced.

Step 2. Maintain a childlike “why” attitude
about the problem domain, even if you con-
sider yourself an expert—especially if you con-
sider yourself an expert. A few more “why”
questions may be all you need to avoid design
pitfalls. Again, be prepared for some resis-
tance. Years ago, I assisted a biomedical soft-
ware producer in the development of their
next-generation product family. I wasn’t very
fond of their approach to database design,
which started almost at the physical level. I
warned them against the risks of neglecting
higher-level steps. “We don’t need no stink-
ing analysis,” they answered, “because we
know our domain very well.”

So well, they neglected to add, that they
already had a solution in mind, based on pre-

s o a p b o x

2 0 S E P T E M B E R / O C T O B E R 1 9 9 7

New problem

Past problem
Past solution

Figure 1. Too often we fail to see a new
problem clearly because we color our per-
ception of it with recollections of similar
problems we’ve solved in the past. We also
inject fragments of those past solutions into
our thinking, further obscuring the cur-
rent problem.

.

vious experience. They simply wanted it im-
plemented in the new environment. Months
later, it turned out that several classes, in-
cluding central ones like that for the patient,
were too limited to support the new prod-
uct’s richer functionalities. Upgrading the
classes required considerable reworking and
some features were still sacrificed because
the reworking cost necessary to implement
them was unacceptably high.

Step 3. Remember that, like you, users are
human. User involvement is an important
ingredient in a successful project. However,
you shouldn’t believe that user involvement
will prevent requirements pollution. Most
often, users have a clear idea of their “pre-
ferred” solution in mind, which you cannot
expect them to filter out for you. The user’s
solution will probably involve some tech-
nology familiar to them, be that paper forms,

dumb terminals, personal computers, or
graphics workstations. Sometimes, it’s fine
to build a system according to the user-spec-
ified solution, without investigating the prob-
lem domain further. In other cases, how-
ever—even though the users’ suggestions
and opinions about the problem domain are
invaluable—you must be wary of incorpo-
rating their personal solution intact and un-
filtered into the requirements. ◆

Carlo Pescio has a doctoral degree in com-
puter science and is a consultant and men-
tor for various European companies and
corporations, including the Directorate of
the European Commission. He specializes
in object-oriented technologies and is a
member of the IEEE Computer Society,
the ACM, and the New York Academy
of Sciences. He lives in Savona, Italy, and
can be contacted at pescio@acm.org.

.

Reader Service Number 10

