
130 Computer

O
ver two decades ago, expert sys-
tems were one of the most
promising technologies. Then
researchers rapidly stumbled
into what’s called the Feigen-

baum Bottleneck: As domain complexity
grows, it becomes very difficult for
human experts to formulate their knowl-
edge as practical strategies (as human
“say-how”). It is easier to demonstrate
knowledge by doing (“show-how”), and
most people can also make good choices
between alternatives (“say-what”).

Not much attention has been paid to
the Feigenbaum Bottleneck outside the
domain of artificial intelligence. This is
unfortunate, because the bottleneck hints
at the inner nature of human beings. To
see the depth of its effects, we have to
look no further than the current state of
software systems design.

PRINCIPLES,
PRINCIPLES EVERYWHERE

Early in the history of programming,
brilliant people realized that every good
software system has some desirable prop-
erties: It should be extensible; parts of it
should be modifiable without major
impact on other parts; and so on.
Because of the Feigenbaum Bottleneck,
it is very hard to describe precise, step-
by-step instructions to build systems with
such properties. It is easier to articulate
the desirable properties in the form of
design principles.

Over the years, the wealth of knowl-
edge accumulated as design principles
has reached a critical mass. Entire books

are now dedicated to the subject. Still,
despite this body of knowledge, design
remains difficult. A major problem is that
principles are ambiguous and not very
constructive. Ambiguity comes from the
use of natural language, but also from
the desire to capture a large number of
cases under a single principle. As a con-
sequence, adherence to a principle is
often nonmeasurable.

By “not very constructive,” I mean that
a principle often provides no guidance
toward a design that respects the principle
itself. This makes principles-driven design
somewhat hard to practice successfully
unless you have considerable experience.

THE REVENGE OF PRACTICE
In more recent times, design patterns

have emerged as a valid alternative to the
principles-driven approach. The intro-
duction to Design Patterns (E. Gamma
et al., Addison-Wesley, 1994) is adamant:
“One thing expert designers know not to

do is solve every problem from first prin-
ciples. Rather, they reuse solutions that
have worked for them in the past.”

If principles represent the “say-what”
approach to design, patterns are the
“show-how” way. You look for recur-
ring design problems, find the solutions
that worked better, and capture their
essence in a pattern.

The biggest problem with patterns is
that they rely on previous experience, so
when the available knowledge does not
cover your problem, you are out of luck.
Sure, human beings are fairly flexible;
they can come up with some workable
solution anyway. But obviously there is
a limit to how far you can go with pat-
terns alone. Also, patterns leave a lot of
details unspecified, so that they are inde-
pendent from each instance. As a conse-
quence, designers must be able to fill in
the blank, usually backing up with their
own experience, which is hard for inex-
perienced designers.

Finally, there is a “disregard for origi-
nality” in the pattern movement. Stop
and think about how those clever solu-
tions have been devised in the first place.
Because in absence of previous experi-
ence, the original, bright designer didn’t
use patterns, but some other approach
which is now intentionally neglected.
Patterns are a great way to encode
knowledge, but as a design technique
they are necessarily incomplete: They
leverage existing solutions but cannot
generate completely new ones.

SYSTEMATIC DESIGN
It is recognized that we lack a system-

atic approach to design. Assuming we
have done a good job of analysis, we are
still largely left at the mercy of experi-
ence: our own experience, to disentangle
ourselves in the jungle of principles, and
other people’s experience, under the form
of patterns. This being the same in all the
other disciplines, we may conclude that it
is an unfortunate fact of life, shrug our
shoulders, and go back to our high-pay-
ing design jobs. But this is not generally
true. Electrical engineering, for instance,
has a large theoretical background but
also a comprehensive body of heuristic
techniques that can be systematically
applied to solve problems. The same
holds for other fields as well. And here
we close the circle: the Feigenbaum
Bottleneck notwithstanding, we have to
bite the bullet and try to articulate a “say-
how” approach to software design.

Principles
Versus

Patterns
Carlo Pescio, Eptacom Consulting

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer,
EiffelSoft, ISE Bldg., 2nd Fl.,
270 Storke Rd., Goleta, CA 93117;
voice (805) 685-6869; ot-column@eiffel.com

Patterns are a great way
to encode knowledge,

but as a design technique
they are incomplete:

they leverage existing
solutions but cannot
generate new ones.

.

TRANSFORMATIONAL APPROACH
Trivial design is easy. After all, it is just

a matter of laying down a solution, and
most people can even skip this step alto-
gether and jump to coding. Each
approach leads to a solution that is often
less than optimal.

However, if we have a systematic
method to recognize and solve common
problems in the initial, trivial design, we
have a much higher chance of ending up
with a better result. Also, if the problem-
solving approach is constructive, we can
gradually learn how to avoid problems
up front, applying the techniques on the
fly as expert designers do.

Here I describe an approach to design
based on transformation techniques,
which I’ve used with success in the devel-
opment of large systems. To find a trans-
formation technique, you start with an
informal design principle. Then you try
to distillate some necessary conditions
which are unambiguous and amenable
to formal verification. It is not necessary
to capture the whole essence of the prin-
ciple in a single rule: In some cases, that’s
simply not possible. However, we can
settle for a small number of necessary
conditions, provided that they can be
conceptually ascribed to the principle
and that they are formally verifiable. The
next step is to identify a set of transfor-
mations that can be used to enforce the
observance of a rule.

Each transformation technique, when
applied to an interoperating set of classes
that violate a design rule, should lead to
an equivalent structure that respects the
rule. Patterns are a good source of inspi-
ration for atomic transformation tech-
niques because most patterns are based

Basically, the Demeter Law prevents an
object from taking a part of another ob-
ject and doing something with it. Any
program can be modified to conform with
the Demeter Law, but automatic trans-
formations rarely yield good code. What
we want is to find a set of transformations
that respect the spirit of the rules, not only
the letter. Our job is to find the verifiable
condition, and to provide a set of trans-
formations to the designer. The designer
picks the best suited transformation.

Figure 2 gives an example of a trans-
formation. Now A asks B to do some-
thing, and B gets its own part and asks it
to do it. Instead of asking for a chapter and
then printing it, now A asks to print a cer-
tain chapter. Each object exposes only ser-
vices, not data (the “get” becomes “do”).

Although trivial once exposed, this
transformation rule is useful in a large
number of cases and is used instinctively
by experienced designers. Naturally,
there are several other transformation
techniques that may be used to enforce
the Demeter Law, as well as other mea-
surable, necessary conditions that sub-
sume the “I’m Alive!” principle. If you
know some interesting techniques, I
would be glad to hear from you.

Over the years, I’ve identified a small
set of verifiable rules and transfor-
mation techniques. I’ve applied

them during the design of large, real-
world critical systems, and taught them
to developers. I’ve found that they are
very easy to grasp and that people end
up paying more attention to design prin-
ciples once they know how to verify and
make correction to their works.
Obviously, many rules and techniques
are yet to be found. Interestingly, verifi-
able rules may lead to some true object-
oriented CASE tools, beyond glorified
drawing systems. ❖

Carlo Pescio is a consultant and mentor
for various European companies and
corporations, specializing in object-
oriented technologies. He has a doctoral
degree in computer science and is a mem-
ber of the IEEE Computer Society, the
ACM, and the New York Academy of Sci-
ences. Contact him at pescio@acm.org.

on a combination of several simpler tech-
niques. That’s why patterns aren’t always
easy to understand in depth.

Consider the informal principle,
“abstractions should not depend on
details.” I have taken this principle and
identified a formal necessary condition
and some transformation techniques (see
my paper “Deriving Patterns from Design
Principles,” to appear this year in the
Journal of Object Oriented Program-
ming). Using those techniques, I derive
the Observer and the Mediator patterns
from two trivial designs.

Here I briefly consider a simpler case,
the “I’m Alive!” principle, as described
by Peter Coad and Jill Nicola (Object
Oriented Programming, Yourdon Press,
1993). This principle is usually spoken
as “an object should expose services, not
data.” This is a fundamental OOP prin-
ciple, but unfortunately it is not based on
measurable semantics. In practice, it can
be violated as follows: Object A asks
object B for one of its parts, C, and then
does something with C. Figure 1 shows
an example.

For example, B may be a Book, C a
Chapter, and A may iterate over the chap-
ters and print them. If we consider only this
scheme, it’s much easier to come up with a
good design rule that can be automatically
verified. In fact, such a rule already exists.
It’s called the Demeter Law: Any method
M of a class C should use only the imme-
diate parts of the object, the parameters of
M, objects that are directly created in M, or
global objects (described by K.J. Lieberherr
and I.M. Holland, “Assuring Good Style
for Object-Oriented Programs,” IEEE
Software, Sept. 1989). Other formulations
are more amenable to automatic checking.

September 1997 131

Object Technology

A

B C

D
o(

p1
, p

2)

Do(p2)

Figure 1. Violating a principle. Figure 2. Sample transformation.

.

D
o(p2)

A

B C

G
et

C(
p1

)

C

